by
Thank you to all who joined Equalum and TDWI for this dynamic webinar back in January 2020. We covered how organizations can...
Throughout the history of data warehousing, data integration processes have been critical for sheltering transaction processing systems from additional processing loads to maintain performance service-level agreements (SLAs)—and for ensuring that data originating from different sources could be combined to enable more robust and complete enterprise reporting and analytics. Many existing data warehouses have relied on a conventional data integration process: extract data from the sources, move the extracted data sets to a staging area, standardize and cleanse the extracted data, then schedule bulk data loads into the target data warehouse.However, these decades-old techniques for data integration are rapidly becoming obsolete as organizations adopt hybrid architectures to support modern real-time analytics and machine learning projects. Whether you need to synchronize data across on-premises/cloud boundaries, integrate data from SaaS/PaaS providers, or ingest and process streaming data in real time, the traditional extract, transform, and load (ETL) approach is insufficient to enable real-time predictive and prescriptive analytics. In this webinar, we discuss how traditional data integration may be impeding modern analytics and explore new ideas for using an enterprise integration fabric to modernize data integration.
David, president of Knowledge Integrity, Inc, (www.knowledge-integrity.com), is a recognized thought leader and expert consultant in the areas of data quality, master data management, and business intelligence. David is a prolific author regarding business intelligence best practices, as the author of numerous books and papers on data management, including the just-published “Practitioner’s Guide to Data Quality Improvement.” His best-selling book, “Master Data Management,” has been endorsed by data management industry leaders, and his valuable MDM insights can be reviewed at www.mdmbook.com.
Nir is a thought leader with over 20 years of experience in Big Data architecture and performance. He led product management at Quest Software (Acquired by Dell) for all Big Data products. Nir also led Big Data architecture projects at the Israeli Military Intelligence unit (Equivalent to NSA). He is currently a member of the Forbes Technology Council.